1、無理數(shù)屬于實(shí)數(shù)。
2、“實(shí)數(shù),是有理數(shù)和無理數(shù)的總稱。數(shù)學(xué)上,實(shí)數(shù)定義為與數(shù)軸上的點(diǎn)相對(duì)應(yīng)的數(shù)。實(shí)數(shù)可以直觀地看作有限小數(shù)與無限小數(shù),實(shí)數(shù)和數(shù)軸上的點(diǎn)一一對(duì)應(yīng)。但僅僅以列舉的方式不能描述實(shí)數(shù)的整體。實(shí)數(shù)和虛數(shù)共同構(gòu)成復(fù)數(shù)。
3、無理數(shù),也稱為無限不循環(huán)小數(shù),不能寫作兩整數(shù)之比。若將它寫成小數(shù)形式,小數(shù)點(diǎn)之后的數(shù)字有無限多個(gè),并且不會(huì)循環(huán)。 常見的無理數(shù)有非完全平方數(shù)的平方根、π和e(其中后兩者均為超越數(shù))等。無理數(shù)的另一特征是無限的連分?jǐn)?shù)表達(dá)式。無理數(shù)最早由畢達(dá)哥拉斯學(xué)派弟子希伯索斯發(fā)現(xiàn)。